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Overview

What is money?

Central Banks

How do Central Banks conduct policy?

Can we actually use policy to stabilize the economy?

If so, which polices should we use?

We shall focus on monetary policy and macroprudential policy (if we have
time)
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What is money?

Functions of Money I

Medium of exchange. Money facilitates transactions as it is accepted by
everybody in the exchange. This function is based on the perfect liquidity
characteristic mentioned above. Obviously, the medium of exchange role of
money has a tremendous impact on the volume of purchases and sales in the
economy. Think for a moment of two economies with the same resources but
one with money and one without money (barter economy). What would
happen in the non-monetary economy? Problems such as the double
coincidence of wants and non-divisible goods would arise making the
exchanges very costly. Transaction costs would be much higher in this
economy without money.
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What is money?

Functions of Money II

Medium of account. Another important function provided by money is
serving as a medium of account that gives prices to all the distinct goods of
the economy. This function of money also reduces substantially the
transaction costs. In particular, the information costs are much lower in a
monetary economy. The introduction of money allows us to express the value
of all goods (their price) in terms of the units of money. In an economy with
N goods, there would be N − 1 prices to learn. If this economy were a barter
economy shoppers would have N(N − 1)/2 relative prices to learn. As one
illustrative example, I suggest you calculate the number of prices to memorize
when there are 1000 goods in the economy (N = 1000).

Store of value Income can be saved for the future in the form of money. As
money does not deteriorate over time (at least over quite a long period of
time!), it can be used to store value. In modern economies the store-of-value
property is also found in other assets such as bonds, shares or real state
properties. Since money pays no interest, it is considered inferior to any of
the other store-of-value assets: bonds pay an interest yield, shares pay
dividends and real state pay a rental rate. This inferiority is increased when
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What is money?

Functions of Money III

money is falling in value because of a positive rate of inflation. From a purely
rational perspective, our savings should be placed in some risk-free
interest-bearing asset and money demand for this purpose should be zero.
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What is money?

Fiat Money

Any money declared by a government to be legal tender.

State-issued money which is neither convertible by law to any other thing,
nor fixed in value in terms of any objective standard.

Intrinsically valueless money used as money because of government decree.

Fiat money has been the norm since the 1970’s. Potential problems as a store of
value.
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Central Banks

Central Bank Balance Sheet I
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Central Banks

Central Bank Balance Sheet II

Assets

Government tax revenues less subsidies are held at the Fed. Interest payments
on government issued debt are made from this account. Basically, the
Treasury has an account at the Fed
Assets owned by the Fed, such us Government Debt, MBS (Mortgage-backed
securities).

Liabilities

Reserve cash of US depository institutions (banks) – usually at least 10% of a
bank’s total deposits (this limit is called the reserve requirement).
US paper currency in circulation – when a US depository institution (bank)
needs more currency because of increased demand for money from consumers,
its asks for notes from the Fed. Upon receipt of the notes, the US depository
institution’s account at the Fed is debited. The liabilities on the Fed’s balance
sheet have been transformed from reserves to currency.
Government issued debt (because of the Treasury having an account at the
Fed).

The Fed does not buy these securities directly from the Treasury. The Fed buys
them from institutions, which have purchased US Government Debt

Harjoat S. Bhamra Lecture 1: Basics of Central Banks & Monetary Policy 2015 9 / 67



Central Banks

Central Bank Balance Sheet III

Suppose the Fed purchases x USD worth of T-Bills from a bank. The bank
receives an deposit of 10000 USD at its account at the Fed, which increases the
Fed’s liabilities by 10,000 USD and increases its assets via 10,000 USD worth of
T-Bills. There is no net change in the value of the balance sheet, but both
assets and liabilities have increased by the same amount.
Any US Government Debt purchased by the Fed has been taken out of
circulation, decreasing supply, thereby raising the price and lowering the
relevant interest rate. Hence, the Government spends less cash to pay off its
loans. By purchasing US Government Debt, a liability is cancelled out by an
asset. The act of purchasing the debt via cash, creates a new form of liability.
The initial liability in the form of the Treasury borrowing money gets
transformed into cash and the relevant interest rate is lowered, saving the
Government money. Furthermore, the Fed receives coupon payments on the US
Government Debt it owns, which its gives back the to the Government! If the
Fed holds the US Government Debt it has purchased, the Fed is allowing the
US Government to borrow money for free.
Look at Federal Reserve Bank of St. Louis, Is the Fed Monetizing Government
Debt?, February 1, 2013
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How does a central bank conduct monetary policy?

Monetary Policy Tools

Money supply

Money demand – interest rate

Quantitative Easing

Credit Easing
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How does a central bank conduct monetary policy?

Money Supply I

The old way to think about monetary policy was to consider changes in the
size of the money supply. This is usually done through open market
operations, in which short-term government debt is exchanged with the
private sector.

Remember that your standard US bank holds cash reserves at the Fed. The
Fed requires that banks meet a reserve requirement (this called
fractional-reserve banking). To ensure they meet this reserve requirement,
banks borrow from each other overnight at a special interest rate, known as
the Fed funds rate (in other countries, it’s called the interbank rate.
LIBOR is the UK name). The Fed funds rate floats depending on how much
banks have to lend. The amount they borrow and lend each night is called
Fed funds.
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How does a central bank conduct monetary policy?

Money Supply II

If the Fed buys or borrows treasury bills from commercial banks, the central
bank will add cash to the accounts, called reserves, that banks are required
to keep with it. That expands the money supply. By contrast, if the Fed sells
or lends treasury securities to banks, the payment it receives in exchange will
reduce the money supply. The change in the amount of money in the
economy affects interbank interest rates. Trading in short-term
government debt affects the short-end of the yield curve.

We can try and write down a budget constraint modelling this. We shall
assume there is a joint fiscal-monetary authority, which can pay a subsidy at
a rate Gt to households and receive taxation revenues at the rate Tt . For
simplicity, assume the only assets owned by this authority are short-term
bonds of infinitesimal maturity, the stock of which is denoted in real terms by
WCB , which earns the real risk-free interest rate, r . The authority can also
issue cash notes, which are liabilities. Denote the date-t nominal stock of
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How does a central bank conduct monetary policy?

Money Supply III

money by M and the price index by P. The authority’s real liabilities are then
M
P . Hence, the date-t value of the fiscal-monetary authority’s balance sheet is

HCB,t = WCB,t −
Mt

Pt
. (1)

The date-t + dt value of the balance sheet is given by

HCB,t+dt = WB,te
∫ t+dt
t

rudu − Mt

Pt+dt
+ (Tt − Gt)dt (2)

Assuming that the price-index is locally risk-free, we have

Pt+dt = Pte
∫ t+dt
t

πu , (3)
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How does a central bank conduct monetary policy?

Money Supply IV

where πt is date-t inflation. Hence we obtain

HCB,t+dt = WCB,te
∫ t+dt
t

rudu − Mt

Pt
e−

∫ t+dt
t

πu (4)

HCB,t+dt = WCB,t(1 + rtdt)− Mt

Pt
(1− πtdt) + (Tt − Gt)dt (5)

dHCB,t = WCB,trtdt +
Mt

Pt
πtdt + (Tt − Gt)dt (6)

When the fiscal-monetary authority has issued money, inflation erodes the
real value of its liabilities, thereby increasing the real value of the balance
sheet. Recalling that HCB = WCB − M

P , we obtain

dHCB,t = HCB,trtdt +
Mt

Pt
(rt + πt)dt + (Tt − Gt)dt (7)
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How does a central bank conduct monetary policy?

Money Supply V

We can write the above dynamic intertemporal budget constraint as the
following static intertemporal budget constraint

HCB,t +Et

∫ ∞
t

Λu

Λt
Tudu+Et

∫ ∞
t

Λu

Λt
(ru +πu)

Mu

Pu
du = Et

∫ ∞
t

Λu

Λt
Gudu, (8)

where Λ is a stochastic discount factor process.
Interpretation of fiscal-monetary authority’s static intertemporal budget
constraint
Et

∫∞
t

Λu

Λt
Tudu – PVt of tax revenues

Et

∫∞
t

Λu

Λt
(ru + πu)Mu

Pu
du – PVt of money flows supplied to households. Mu is

the flow of money, ru + πu is nominal ‘wage rate’ earned by the authority
from supplying one unit of money per unit time, ru+πu

Pu
is real ‘wage rate’

earned by the authority from supplying one unit of money per unit time.
Et

∫∞
t

Λu

Λt
Gudu – PVt of flow of government subsidies.
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How does a central bank conduct monetary policy?

Money Demand

Money demand. Nowadays we think about monetary policy in terms of
interest rates, which of course impact money demand.

Setting banking-system lending or interest rates (such as the US overnight
bank lending rate, the federal funds discount Rate, and the London
Interbank Offer Rate, or Libor) in order to manage money demand is a major
tool used by central banks. Ordinarily, a central bank conducts monetary
policy by raising or lowering its interest rate target for the interbank interest
rate. If the nominal interest rate is at or very near zero, the central bank
cannot lower it further. Such a situation, called a liquidity trap, can occur,
for example, during deflation or when inflation is very low.

The Fed uses open market operations to adjust the supply of reserve balances
to keep the federal funds rate–the interest rate at which depository
institutions lend reserve balances to other depository institutions
overnight–around the target established by the FOMC (Federal Open Market
Committee). Other major central banks operate in a similar fashion.

That a target is announced publicly is key.
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How does a central bank conduct monetary policy?

Unconventional monetary policy at the zero bound I

During the past two years, central banks worldwide have cut policy rates
sharplyin some cases to zeroexhausting the potential for cuts. Nonetheless,
they have found unconventional ways to continue easing policy. One
approach has been to purchase large quantities of financial instruments from
the market. This so-called quantitative easing increases the size of the
central banks balance sheet and injects new cash into the economy. Banks
get additional reserves (the deposits they maintain at the central bank) and
the money supply grows. A closely related option, credit easing may also
expand the size of the central banks balance sheet, but the focus is more on
the composition of that balance sheet–that is, the types of assets acquired.
In the current crisis, many specific credit markets became blocked, and the
result was that the interest rate channel did not work. Central banks
responded by targeting those problem markets directly. For instance, the Fed
set up a special facility to buy commercial paper (very short-term corporate
debt) to ensure that businesses had continued access to working capital. It
also bought mortgage-backed securities to sustain housing finance.
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How does a central bank conduct monetary policy?

Unconventional monetary policy at the zero bound II

Some argue that credit easing moves monetary policy too close to industrial
policy, with the central bank ensuring the flow of finance to particular parts
of the market. But quantitative easing is no less controversial. It entails
purchasing a more neutral asset like government debt, but it moves the
central bank toward financing the governments fiscal deficit, possibly calling
its independence into question. Now that the global economy appears to be
recovering, the main concern has shifted to charting an exit strategy: how
can central banks unwind their extraordinary interventions and tighten policy,
to ensure that inflation does not become a problem down the road?

Read The Rise and (Eventual) Fall in the Fed’s Balance Sheet, January 2014,
Federal Reserve Bank of St. Louis

For liquidity traps, read: Managing a Liquidity Trap: Monetary and Fiscal
Policy, Werning (2012) and The New-Keynesian Liquidity Trap, Cochrane
(2015).
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Basic New-Keynesian Model

Basic New-Keynesian Model I

Assume perfect foresight (will introduce risk later)

Consider an RBC model with a friction (sticky prices or costly price
adjustment) which distorts allocations.

Log output flow in the frictionless economy is the natural rate of output.
Real risk-free rate in the frictionless economy is called the natural interest
rate, denoted by rn

Difference between log output flow and the natural rate of output is called the
output gap, denoted by x

Monetary policy can offset the friction and potentially improve allocations.
The friction creates a role for policy. Without frictions, policy is irrelevant or,
even worse, policy can be a friction and distort allocations!

rate of inflation is denoted by π
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Basic New-Keynesian Model

Basic New-Keynesian Model II

Standard 3-equation model

δπt =
dπt
dt

+ κxt , inflation matters for output gap because of pricing friction

– New Keynesian Philips Curve (9)

dxt
dt

= ψ(it − rnt − πt), dynamic investment-savings equation (10)

it = v(xt , πt), rule for nominal interest rate (11)

Provides simplified framework for thinking about monetary policy

What do x and π look like for different nominal interest rate rules?

What are the economic foundations for the 3 equations summarizing the
model?
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Basic New-Keynesian Model

Outline of Basic New Keynesian Model

Assume perfect foresight

Representative household is a consumer-worker

Continuum of firms producing differentiated goods using labor. Firms exploit
monopoly power – set prices to maximize firm value

Can look at employment

No real investment

Growth is exogenous

Household’s optimisation probem can be attacked using tools from Back (2010)
Need some tools from deterministic control theory to attack firm’s problem.
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Deterministic Control Theory Introduction to Pontryagin’s Maximum Principle

Typical Deterministic Optimal Control Problem

t ∈ T = [0,∞)

We have a 1-d state1, s, which evolves over time according to the following law of motion

ds(t)

dt
= f (s(t), c(t)) (12)

The starting value of the state is given by s(0) = s0. The future values of the state will
depend on the control variable c, which is also 1-d.

An agent chooses the path of the control, c(t)t∈T . Her objective is to maximize the
discounted value of some flow function. At time-t, the flow function is given by

u(s(t), c(t)) (13)

With a constant discount rate ρ, the agent’s objective is given by

J(s0) = sup
c(t)t∈T

∫ ∞
0

e−ρtu(s(t), c(t))dt (14)

What path should the agent choose?

1later on we shall deal with multidimensional states
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Deterministic Control Theory Introduction to Pontryagin’s Maximum Principle

Hamiltonians

One way of finding the optimal control is to define a Hamiltonian and apply Pontryagin’s
Maximum Principle.

The Hamiltonian is defined by

H(s(t), c(t), λ(t)) = u(s(t), c(t)) + λ(t)f (s(t), c(t)). (15)

We can interpret H(s(t), c(t), λ(t))dt as the sum of the flow function to the agent over
the next infinitesimal instant plus the present value of future inflows

f (s(t), c(t))dt gives the increase in the state and λ(t) converts this into the same
units as the flow function
λ(t) is called the co-state variable

economic interpretation – shadow price of the state variable – later will see that

λ(t) =
∂J(t)

∂st
, (16)

where

J(t) = J(s(t)) = sup
c(u)t≥u

∫ ∞
t

e−ρ(u−t)u(s(u), c(u))du (17)

finance interpretation – e−ρtλ(t) – the discount factor for converting date-t
values into date-0 values
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Deterministic Control Theory Introduction to Pontryagin’s Maximum Principle

Pontryagin’s Maximum Principle.

NSC conditions for a maximum:

Hs(s(t), c(t), λ(t)) +
dλ(t)

dt
− ρλ(t) = 0 (18)

Hc (s(t), c(t), λ(t)) = 0 (19)

ds(t)

dt
= f (s(t), c(t)) (20)

lim
t→∞

e−ρtλ(t)s(t) = 0 (21)

Second equation gives FOC for the control – can therefore write control in terms of state
and co-state variables

First and third equations give a coupled system of ode’s for state and co-state variables,
where time is the independent variable

Boundary conditions

initial condition for the state s(0) = s0

transversality condition, limt→∞ e−ρtλ(t)s(t) = 0

λ(0) has to be found!
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Deterministic Control Theory Introduction to Pontryagin’s Maximum Principle

Where does Pontryagin’s Maximum Principle come from?

We can derive Pontryagin’s Maximum Principle based on a variational
argument

We shall prove necessity, but not sufficiency

To understand the ideas behind variational argument, we shall briefly review

optimization in finite dimensional vector spaces, in particular how to maximize
a functional with and without constraints and the idea of directional derivatives
redo the above with function spaces, a type of infinite dimensional vector space
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Deterministic Control Theory Review of Directional Derivatives

Functionals and Lagrange Multipliers

We need to remind ourselves (or learn quickly!) about two things:

Maximizing functionals
Maximizing functionals subject to dynamic constraints

To understand basic ideas, it’s best to go back to basics – in this case,
optimization in finite dimensional (fd) vector spaces
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Deterministic Control Theory Review of Directional Derivatives

Maximizing Functionals I

Definition 1

A functional is a map V → R, where V is a vector space

Suppose you are dot that can move around a 3-d world. This world is entirely flat, apart
from 1 hill, which is the top half of the 3-d unit sphere. What is the co-ordinate of the
highest point you can reach and how high is it? Without doing any maths, you know that
the maximum height is 1 unit and the corresponding co-ordinate is (x , y , z) = (0, 0, 1).
Clearly, this problem has a unique solution.

Now let’s attack the problem mathematically. The height of a point in our 3-d world is
given by

f (x , y) =

{ √
1− (x2 + y2) , x2 + y2 ≤ 1,

0 , x2 + y2 > 1
(22)

f (x , y) is a functional, which maps elements of R2 to R. It is an example of a functional.
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Deterministic Control Theory Review of Directional Derivatives

Maximizing Functionals II

At the maximum, we have fx = fy = 0. We can write this more succinctly as

∇︸︷︷︸
=(∂x ,∂y )

f = 0︸︷︷︸
zero vector

(23)

Doing the algebra

fx = −
x

2

[
1− (x2 + y2)

]− 1
2 (24)

fy = −
y

2

[
1− (x2 + y2)

]− 1
2 (25)

and so we see that ∇f = 0 implies x = y = 0, where f = 1.
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Deterministic Control Theory Review of Directional Derivatives

Directional derivatives

Others ways of writing the FOC for an unconstrained optimum

∀n ∈ R2 ∂f
∂n = 0

∂f

∂n
= ∇f · n = ∂x f · nx + ∂y f · ny (26)

∂f
∂n is the inner product of ∇f and n

using different notation for the inner product

∂f

∂n
=< ∇f , n > (27)

introduce yet another notation (will make it easier to understand
optimization in infinite dimensional spaces)

δ(f , n) =< ∇f , n > (28)

∇f and n are vectors but δ(f , n) is a scalar
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Deterministic Control Theory Review of Directional Derivatives

Maximizing Functionals & Function Spaces I

We can also differentiate functionals where the underlying vector space is an
infinite dimensional function space

For V = {f ∈ C∞ : ∀x g(x + 2π) = g(x)}

I0[g ] =

∫ 2π

0

(g(x))2dx (29)

I1[g ] =

∫ 2π

0

(g(x))2 + (g ′(x))2dx (30)

(31)

Generalize idea of directional derivative to function spaces

δ(I , φ) =
d

dε
I [g + εφ]|ε=0 (32)
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Deterministic Control Theory Review of Directional Derivatives

Maximizing Functionals & Function Spaces II

If we have functional I [g ], we want to investigate I [g + εφ], where φ(x) is the
direction along which we take the derivative – it is a vector on our space,
which makes it another function. This amounts to considering small
variations made to g and seeing what happens as |ε| grows from 0. If one of
the gradients d

dε I [g + εφ] is not zero, then g cannot be a local extremum for
I .
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Deterministic Control Theory The Calculus of Variations & Pontryagin’s Principle

Calculus of Variations I

We now use a variational argument to prove that the conditions in Pontryagin’s Maximum
Principle are indeed necessary for a maximum

Set up the Lagrangian for the agent’s control problem

L[s, c] =

∫ ∞
0

e−ρtu(s(t), c(t)) +

Lagrange multiplier︷ ︸︸ ︷
e−ρtλ(t)

(
f (s(t), c(t))−

ds(t)

dt

)
dt (33)

Include the discount factor e−ρt within the Lagrange multiplier – makes it easy to rewrite
the Lagrangian in the following parsimonious form

L[s, c] =

∫ ∞
0

e−ρt
[
u(s(t), c(t)) + λ(t)

(
f (s(t), c(t))−

ds(t)

dt

)]
dt (34)

Think of the Lagrangian as a functional, which maps the paths of the state and the control
into a scalar

Path for the control is parameterized by the function c(t) : T → R.

The corresponding path for the state is given by the solution of the ode (56) subject to the
initial condition s(0) = s0, which is parameterized by the function s(t) : T → R.
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Deterministic Control Theory The Calculus of Variations & Pontryagin’s Principle

Calculus of Variations II

Suppose the agent changes the path for the control to c ′(t)t∈T . Wlog,

c ′(t) = c(t) + εp(t), (35)

where p(t) is some function p(t) : T → R. The ε allows us to shrink the difference
between the old and new paths for the control.

The initial value of the state is fixed at s0, but the remainder of the path for the state wull
change – the new path for the state is denoted by s′(t)t∈T . Wlog,

s′(t) = s(t) + εq(t), (36)

where q(t) is some function q(t) : T → R and q(0) = 0 to ensure the new path for the
state still starts at s0

With the new paths for the control and the state, the Lagrangian becomes

L[s + εq, c + εp] =

∫ ∞
0

e−ρt [u(s(t) + εq(t), c(t) + εp(t)) (37)

+λ(t)

(
f (s(t) + εq(t), c(t) + εp(t))−

ds(t)

dt
− ε

dq(t)

dt

)]
dt (38)

The agent wants to choose the path for the control, which maximizes the Lagrangian.
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Deterministic Control Theory The Calculus of Variations & Pontryagin’s Principle

Calculus of Variations III

The original path is optimal if the following FOC holds

∀q, p
dL[s + εq, c + εp]

dε
|ε=0 = 0 (39)

We are just using the directional derivative δ(L[s, c], q, p) = dL[s+εq,c+εp]
dε

|ε=0, so our FOC
is equivalent to

∀q, p δ(L[s, c], q, p) = 0 (40)

Let’s compute the directional derivative

dL[s + εq, c + εp]

dε
|ε=0 (41)

=

∫ ∞
0

e−ρt
[
d

dε

[
u(s′(t), c ′(t)) + λ(t)f (s′(t), c ′(t))

]
− λ(t)

dq(t)

dt

]
dt|ε=0. (42)

We now introduce the Hamiltonian function

H(s(t), c(t), λ(t)) = u(s(t), c(t)) + λ(t)f (s(t), c(t)). (43)
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Deterministic Control Theory The Calculus of Variations & Pontryagin’s Principle

Calculus of Variations IV

We have a nice economic interpretation for the Hamiltonian – it also makes our
computations cleaner!

dL[s + εq, c + εp]

dε
|ε=0 =

∫ ∞
0

e−ρt
[
d

dε
H(s′(t), c ′(t), λ(t))− λ(t)

dq(t)

dt

]
dt|ε=0 (44)

d

dε
H(s′(t), c ′(t), λ(t)) = Hs(s′(t), c ′(t), λ(t))q(t) +Hc (s′(t), c ′(t), λ(t))p(t) (45)

dL[s + εq, c + εp]

dε
|ε=0 (46)

=

∫ ∞
0

e−ρt
[
d

dε
H(s′(t), c ′(t), λ(t))− λ(t)

dq(t)

dt

]
dt|ε=0 (47)

=

∫ ∞
0

e−ρt
[
Hs(s(t), c(t), λ(t))q(t) +Hc (s(t), c(t), λ(t))p(t)− λ(t)

dq(t)

dt

]
dt (48)
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Deterministic Control Theory The Calculus of Variations & Pontryagin’s Principle

Calculus of Variations V

∫ ∞
0

e−ρtλ(t)
dq(t)

dt
dt =

[
e−ρtλ(t)q(t)

]∞
0
−
∫ ∞

0

d

dt

[
e−ρtλ(t)

]
q(t)dt (49)

= lim
t→∞

e−ρtλ(t)q(t)−
∫ ∞

0
e−ρt

(
dλ(t)

dt
− ρλ(t)

)
q(t)dt (50)

The FOC then becomes∫ ∞
0

e−ρt
[(
Hs(s(t), c(t), λ(t)) +

dλ(t)

dt
− ρλ(t)

)
q(t) +Hc (s(t), c(t), λ(t))p(t)

]
(51)

− lim
t→∞

e−ρtλ(t)q(t), ∀p, q (52)

Hence

Hs(s(t), c(t), λ(t)) +
dλ(t)

dt
− ρλ(t) = 0 (53)

Hc (s(t), c(t), λ(t)) = 0 (54)

lim
t→∞

e−ρtλ(t)q(t) = 0 (55)

The latter equation holds for any state variable q and so limt→∞ e−ρtλ(t)s(t) = 0
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Deterministic Control Theory Bellman’s Principle of Optimality & the Hamilton-Jacobi-Bellman Equation

Hamilton-Jacobi-Bellman Equation

Another approach to finding the optimal control

t ∈ T = [0,∞)

We have a 1-d state2, s, which evolves over time according to the following law of motion

ds(t)

dt
= f (s(t), c(t)) (56)

The starting value of the state is given by s(0) = s0. The future values of the state will
depend on the control variable u, which is also 1-d.

An agent chooses the path of the control, c(t)t∈T . Her objective is to maximize the
discounted value of some flow function. At time-t, the flow function is given by

u(s(t), c(t)) (57)

With a constant discount rate ρ, the agent’s objective is given by

J(0) = J(s(0)) = J(s0) = sup
c(t)t∈T

∫ ∞
0

e−ρtu(s(t), c(t))dt (58)

Date-t objective function

J(t) = J(s(t)) = sup
c(u)t≥u

∫ ∞
t

e−ρ(u−t)u(s(u), c(u))du (59)

The maximized objective function is called the value function

What path should the agent choose?
2later on we shall deal with multidimensional states
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Deterministic Control Theory Bellman’s Principle of Optimality & the Hamilton-Jacobi-Bellman Equation

The value function satisfies the Hamilton-Jacobi-Bellman (HJB) equation

0 = sup
c(t)

u(s(t), c(t))− ρJ(s(t)) + J′(s(t))f (s(t), c(t)) (60)

The FOC condition of the HJB is

uc (s(t), c(t)) = J′(s(t))fc (s(t), c(t)) (61)

Solving the above equation gives the date-t value of the optimal control in terms of the
date-t state and the derivative of the value function.

To find the value function, substitute the optimal control, c∗(t) into the HJB to get a
nonlinear ordinary differential equation (no longer need the sup)

0 = u(s(t), c∗(t))− ρJ(s(t)) + J′(s(t))f (s(t), c∗(t)) (62)

How do we solve the above nonlinear ode

Does not generally have a closed-form solution – need numerical methods
Do not have boundary conditions – need a new concept of what a solution to a
differential equation is
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Deterministic Control Theory Bellman’s Principle of Optimality & the Hamilton-Jacobi-Bellman Equation

Bellman’s Principle of Optimality

Principle of Optimality: An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision. (See
Bellman, 1957, Chap. III.3.)
Key conceptual difference relative to Pontryagin’s Maximum Principle

Think of the control a function of the state.
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Deterministic Control Theory Bellman’s Principle of Optimality & the Hamilton-Jacobi-Bellman Equation

Heuristic derivation of HJB I

Split the integral for the value function between the next small time interval, [t, t + ∆t) and the
rest of time [t + ∆t,∞)

J(s(t)) = sup
c(u)u≥t

∫ t+∆t

t
e−ρ(u−t)u(s(u), c(u))du + e−ρ∆t

∫ ∞
t+∆t

e−ρ(u−[t+∆t])u(s(u), c(u))du

(63)

Apply Bellman’s Principle of Optimality

Suppose we choose an optimal path at date-t: (ctu(s))u≥t

Suppose we choose an optimal path at date-τ > t: (cτu (s))u≥τ

Principle of Optimality ⇒ (ctu(s))u≥t = (ctu(s))t≤u<τ ∪ (cτu )u≥τ

If we choose an optimal path for the control at some future date, when considered as functions
of the state, the future optimal path is contained within today’s. In other words, the choice of
optimal control is time consistent.

For our infinite horizon problem, where the law of motion for the state does not depend explicitly on time, we can go even further: thinking of the control

as a map from the state to the reals, it so happens that the map is time invariant, i.e. ∀t ∈ T , (ctu (s))u≥t , for each u ≥ t, we have ctu (s) = c(s)
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Deterministic Control Theory Bellman’s Principle of Optimality & the Hamilton-Jacobi-Bellman Equation

Heuristic derivation of HJB II

Exploiting the Principle of Optimality reveals a recursive structure for the value function

J(s(t)) = sup
c(u)u∈[t,t+∆t)

∫ t+∆t

t
e−ρ(u−t)u(s(u), c(u))du

+ e−ρ∆t sup
c(u)u≥t+∆t

∫ ∞
t+∆t

e−ρ(u−[t+∆t])u(s(u), c(u))du

︸ ︷︷ ︸
J(s(t+∆t))

(64)

To derive the HJB equation we just need to indulge in some Calculus. First observe that∫ t+∆t

t
e−ρ(u−t)u(s(u), c(u))du = u(s(t), c(t))∆t + o(∆t) (65)

[
h(t) = o(j(t)) ⇐⇒ limt→0

h(t)
j(t)

= 0
]

From the Principle of Optimality

sup
c(u)u∈[t,t+∆t)

∫ t+∆t

t
e−ρ(u−t)u(s(u), c(u))du = sup

c(t)
u(s(t), c(t))∆t + o(∆t) (66)
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Deterministic Control Theory Bellman’s Principle of Optimality & the Hamilton-Jacobi-Bellman Equation

Heuristic derivation of HJB III

Hence

J(s(t)) = sup
c(t)

u(s(t), c(t))∆t + e−ρ∆tJ(s(t + ∆t)) + o(∆t) (67)

Now

e−ρ∆t = 1− ρ∆t + o(∆t), (68)

and so

J(s(t)) = sup
c(t)

u(s(t), c(t))∆t + J(s(t + ∆t))− ρ∆tJ(s(t + ∆t)) + o(∆t) (69)

Furthermore ∆tJ(s(t + ∆t)) = ∆tJ(s(t)) + o(∆t), and so

J(s(t)) = sup
c(t)

u(s(t), c(t))∆t + J(s(t + ∆t))− ρ∆tJ(s(t)) + o(∆t) (70)

Now

J(s(t + ∆t)) = J(s(t)) + ∆tJ′(s(t))
ds(t)

dt
+ o(∆t) (71)

= J(s(t)) + ∆tJ′(s(t))f (s(t), c(t)) + o(∆t) (72)

(73)
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Deterministic Control Theory Bellman’s Principle of Optimality & the Hamilton-Jacobi-Bellman Equation

Heuristic derivation of HJB IV

and so

0 = sup
c(t)

(
u(s(t), c(t))− ρJ(s(t)) + J′(s(t))f (s(t), c(t))

)
∆t + o(∆t) (74)

Dividing by ∆t and letting ∆t → 0 gives the HJB equation

0 = sup
c(t)

u(s(t), c(t))− ρJ(s(t)) + J′(s(t))f (s(t), c(t)) (75)
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Deterministic Control Theory Bellman’s Principle of Optimality & the Hamilton-Jacobi-Bellman Equation

Connection between Pontrayagin’s Maximum Principle and
the Hamilton-Jacobi-Bellman Equation

Write HJB equation in terms of Hamiltonian

Identify λ(t) = J′(s(t)) (useful to observe that λ(t) = λ(s(t)))

0 = sup
c(t)
H(s(t), c(t), J′(s(t)))− ρJ(s(t)) = 0 (76)

FOC of HJB gives us one part of Maximum Principle

Hc (s(t), c(t), J′(s(t))) = 0 (77)

What about Hs(s(t), c(t), λ(t))− dλ(t)
dt
− ρλ(t) = 0?

We can also derive this from the HJB!
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Deterministic Control Theory Bellman’s Principle of Optimality & the Hamilton-Jacobi-Bellman Equation

Start by noting that at the optimum, where c(t) = c∗(s(t)), the HJB becomes the following ode

0 = H(s(t), c∗(s(t)), J′(s(t)))− ρJ(s(t)) (78)

To derive Hs(s(t), c∗(t), λ(t))− dλ(t)
dt
− ρλ(t) = 0 simply differentiate the ode wrt to s(t) and

use the fact that Hc (s(t), c∗(s(t)), J′(s(t)))

0 = Hs(s(t), c∗(s(t)), J′(s(t))) +

=0︷ ︸︸ ︷
Hc (s(t), c∗(s(t)), λ(t))

∂c∗(s(t))

s(t)
(79)

+Hλ(s(t), c∗(s(t)), J′(s(t)))︸ ︷︷ ︸
=f (s(t),c∗(t))

J′′(s(t))− ρJ′(s(t)) (80)

Remember the identification λ(t) = J′(s(t)), which implies ∂λ(t)
∂s(t)

= J′′(s(t))

0 = Hs(s(t), c∗(s(t)), λ(t)) + f (s(t), c∗(t))
∂λ(t)

∂s(t)
− ρλ(t) (81)

Noting that dλ(t)
dt

= ∂λ(t)
∂s(t)

ds(t)
dt

= ∂λ(t)
∂s(t)

f (s(t), c∗(t)), we obtain

0 = Hs(s(t), c∗(s(t)), λ(t)) +
dλ(t)

dt
− ρλ(t) (82)

What is the point of having these two different approaches to a deterministic optimal control
problem? The Maximum Principle does not assume time consistency, whereas the

Harjoat S. Bhamra Lecture 1: Basics of Central Banks & Monetary Policy 2015 46 / 67



Deterministic Control Theory Bellman’s Principle of Optimality & the Hamilton-Jacobi-Bellman Equation

Hamilton-Jacobi-Bellman equation does. Ask yourself whether or not you think central banks or
policy-making institutions are time consisent!
To learn more about optimal control, read Fleming & Rishel (1975) for rigorous theory and
Chapter 7 of Acemoglu (2008) for economic applications.
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Back to the Basic New Keynesian Model

Model I

Representative household∫ ∞
t

e−ρ(u−t)

(
lnCu −

N1+ϕ
u

1 + ϕ

)
du (83)

C , consumption rate of composite good
N, rate of labor supply

Continuum of firms i ∈ [0, 1] produces differentiated goods

Yt(i) = AtNt(i) (84)

At , common exogenous tech level

Composite good defined by basket

Ct =

(∫ 1

0

Ct(i)
1− 1

ε di

) 1

1− 1
ε

(85)
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Back to the Basic New Keynesian Model

Model II

Ct(i)dt is the quantity of good i consumed by the household over the interval
[t, t + dt).

Can show that:

nominal expenditure on consumption aggregates nicely

PtCt =

∫ 1

0

Pt(i)Ct(i)di (86)

where

Pt =

[∫ 1

0

Pt(i)
1−εdi

] 1
1−ε

(87)

∀i ∈ [0, 1], Ct(i) =

(
Pt(i)

Pt

)−ε
Ct (88)

static intertemporal budget constraint, where H is household wealth

H0 =

∫ ∞
0

Λt

(
Ct −

Wt

Pt
Nt

)
dt (89)
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Back to the Basic New Keynesian Model

Model III

Lagrangian

L =

∫ ∞
0

e−ρt

(
lnCt −

N1+ϕ
t

1 + ϕ

)
dt − κ

∫ ∞
0

Λt

(
Ct −

Wt

Pt
Nt

)
dt (90)

FOC’s

consumption

e−ρtC−1
t = κΛt (91)

labor

e−ρtNϕt = κΛt
Wt

Pt
(92)

Implications of FOC’s
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Back to the Basic New Keynesian Model

Model IV

DF process

e−ρ(u−t)

(
Cu

Ct

)−1

=
Λu

Λt
(93)

consumption-labor

Nϕt Ct =
Wt

Pt
(94)
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Back to the Basic New Keynesian Model

Individual Firm’s Deterministic Optimal Control Problem I

Objective of firm j is to set prices in order to maximize firm value net of
adjustment costs

sup
dPt(j)/dt

∫ ∞
t

e−
∫ u
t
iu [Πu(j)−Θu(j)] du (95)

real firm value is the above nominal value dividend by Pt , the aggregate price
index

Nominal profit flow function

Πt(j) = Pt(j)Yt(j)−WtNt(j) (96)
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Back to the Basic New Keynesian Model

Individual Firm’s Deterministic Optimal Control Problem II

Adjustment cost function

Θt =
1

2
θ

(
dPt(j)/dt

Pt(j)

)2

PtYt (97)

Πt(j) =

[(
Pt(j)

Pt

)1−ε

− Wt

AtPt

(
Pt(i)

Pt

)−ε]
PtYt (98)

Simpler notation: xt = Pt(j), µt = dPt(j)/dt

Deterministic optimal control problem

sup
µt

∫ ∞
t

e−
∫ u
t
iu

[(
x1−ε
u − Wu

Au
x−εu

)
PεuYu −

1

2
θ

(
µu

xu

)2

PuYu

]
du (99)

s.t. dxt = µtdt (100)
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Back to the Basic New Keynesian Model

Individual Firm’s Deterministic Optimal Control Problem III

x is the state variable, which is the price of the good produced by the firm

µ, the rate of change of the state variable, is the control

Hamiltonian

H =

(
x1−ε
t − Wt

At
x−εt

)
PεtYt −

1

2
θ

(
µt

xt

)2

PtYt + µtλt (101)

Apply Pontryagin’s Maximum Principle

(1− ε)x−ε + ε
W

A
x−(1+ε)]PεY + θµ2x−3PY + λ̇− iλ = 0 (102)

λ = θ
µ

x2
PY (103)
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Back to the Basic New Keynesian Model

Individual Firm’s Deterministic Optimal Control Problem
IV

Symmetric equilibrium, where x = P. Define µP = µ/P

0 =

[
(1− ε) + ε

W

AP

]
Y + θµ2

PY + λ̇− iλ (104)

λ = θµPY (105)

With no adjustment costs, i.e. θ = 0, then

Pt =
ε

ε− 1

Wt

At
(106)
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Back to the Basic New Keynesian Model

Individual Firm’s Deterministic Optimal Control Problem V

Differentiate the second equation wrt t: λ̇ = θµ̇PY + µP Ẏ and use this
together with the original second eqn to eliminate λ̇ and λ in the first
equation. We thus obtain(

i − µP −
Ẏ

Y

)
µP = µ̇P +

ε− 1

θ

(
ε

ε− 1

W

PA
− 1

)
(107)
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Back to the Basic New Keynesian Model

Bond Pricing I

The real discount factor function is given by

Λt = e−ρtC−1
t (108)

Real price of a real bond paying off 1 unit of the composite consumption good
at date t + dt

Bt = e−rtdt =
Λt+dt

Λt
(109)

1− rtdt = 1 +
dΛt

Λt
(110)

rt = − Λ̇t

Λt
= ρ+

Ċt

Ct
(111)

define c = lnC

rt = ρ+ ċt (112)
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Back to the Basic New Keynesian Model

Bond Pricing II

Nominal discount factor function is given by

Λ$
t = e−ρtC−1

t P−1
t (113)

nominal price of a nominal bond paying off 1 USD date t + dt

B$
t = e−itdt =

Λt+dt

Λt

Pt

Pt+dt
(114)

1− itdt = 1 +
dΛt

Λt
− dPt

Pt
+ O(dt2) (115)

it = − Λ̇t

Λt
+

dPt

Pt
+ O(dt) (116)

In continuous time limit

it = − Λ̇t

Λt
+

dPt

Pt
(117)

it = rt + µP,t (118)
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Back to the Basic New Keynesian Model

Bond Pricing III

Summary of bond pricing equations

it = rt + µP,t (119)

rt = ρ+ ċt (120)

(121)
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Back to the Basic New Keynesian Model

Equilibrium I

C = Y

i = r + µP (122)

r = ρ+ ẏ (123)

(i − µP − ẏ)µP = µ̇P +
ε− 1

θ

(
ε

ε− 1

W

PA
− 1

)
(124)

ode for µP

ρµP = µ̇P +
ε− 1

θ

(
ε

ε− 1

W

PA
− 1

)
(125)

Finding W
P
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Back to the Basic New Keynesian Model

Equilibrium II

Aggregate output, Yt =
∫ 1

0
Yt(i)di , Aggregate labor supply Nt =

∫ 1

0
Nt(i)di

Yt = At

∫ 1

0

Nt(i) = AtNt (126)

Combine with FOC NϕY = W /P

NϕAN = W /P (127)

(128)

Obtain expression linking labor and wage rate

W

PA
= N1+ϕ (129)

Implies expression linking output and wage rate

W

PA
=

(
Y

A

)1+ϕ

= e(1+ϕ)(y−a) (130)
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Back to the Basic New Keynesian Model

Equilibrium III

Summary of equilibrium conditions

i = r + µP (131)

r = ρ+ ẏ (132)

(i − µP − ẏ)µP = µ̇P +
ε− 1

θ

[
ε

ε− 1
e(1+ϕ)(y−a) − 1

]
(133)

Simplified equilibrium condition

ρµP = µ̇P +
ε− 1

θ

[
ε

ε− 1
e(1+ϕ)(y−a) − 1

]
(134)

Insight – can use µP and µ̇P to control output flow!
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Back to the Basic New Keynesian Model

Equilibrium IV

Natural economy – limit with no price adjustment costs (multiply through by
θ and let θ → 0)

ε

ε− 1
e(1+ϕ)(yn−a) − 1 (135)

Can obtain equilibrium condition in terms of log output gap x = y − yn

ρµP = µ̇P +
ε− 1

θ

(
e(1+ϕ)x − 1

)
(136)
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Back to the Basic New Keynesian Model

Inflation in continuous time

Define date t + dt inflation as the net percentage change in the price level
between dates t and t + dt per unit time, i.e.

πt+dt =
Pt+dt − Pt

Pt

1

dt
(137)

πt + dπt =
1

Pt

dPt

dt
(138)

Taking the continuous time limit

πt =
Ṗt

Pt
(= µP,t) (139)

Relationship between inflation and output gap

ρπ = π̇ +
ε− 1

θ

(
e(1+ϕ)x − 1

)
(140)
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Back to the Basic New Keynesian Model

Insights from New Keynesian Phillip’s Curve

ρπ = π̇ +
ε− 1

θ

(
e(1+ϕ)x − 1

)
(141)

Because household dislikes work there is a tradeoff between more output and
utility, so there is an optimal output path.

It is optimal to keep inflation and the output gap as small as possible

Traditional Phillip’s Curve linkes inflation to employment – NKPC also tells
about this link

ρπ = π̇ +
ε− 1

θ

(
e(1+ϕ)(n−nn) − 1

)
(142)
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Back to the Basic New Keynesian Model

Nominal Interest Rate Rules I

Make nominal interest rate rule depend on current inflation and output gap

it = v(πt , xt) (143)

Obtain a system of ordinary differential equations to pin down outgap and
inflation

rn + ẋ + π = v(π, x) (144)

ρπ = π̇ +
ε− 1

θ

(
e(1+ϕ)x − 1

)
, (145)

where rn = ρ+ ȧ is the natural interest rate.

Linearization takes us to 3 equation model: e(1+ϕ)x − 1 ≈ (1 + ϕ)x
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Back to the Basic New Keynesian Model

Nominal Interest Rate Rules II

Suppose that v(π, x) = a + φππ + φxx . Then

rn + ẋ = (φπ − 1)π + φxx (146)

ρπ = π̇ +
ε− 1

θ

(
e(1+ϕ)x − 1

)
, (147)

where rn = ρ+ ȧ is the natural interest rate.

Transversality condition

θ lim
t→∞

e−ρtπtPtYt = θP0 lim
t→∞

e−ρtπte
∫ t

0
πuduey

n
t +xt (148)
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Back to the Basic New Keynesian Model

Summary

Central Bank’s Balance Sheet and Monetary Policy

Some Deterministic Control Theory!

Derived Basic New Keynesian Model

Still need to apply Basic New Keynesian Model!
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