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Liquidity Traps and Taylor Rules Model

Model Outline

Benhabib, Schmitt-Grohe & Uribe (2002)

No risk

Constant aggregate endowment (no growth either)

Continuum of identical households – derive utility flows from consumption
flows and real money balances

Government

Fiscal and monetary policy

Assets: money, nominal bonds and claim to aggregate endowment
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Liquidity Traps and Taylor Rules Model

Aggregate Endowment

If we switch off risk in the standard Lucas endowment economy (where
output is log-normal), we still have exogenous growth

Yt = Y0e
µY t (1)

We shall also ignore growth: µY = 0
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Liquidity Traps and Taylor Rules Model

Assets I

Nominal bonds in zero-net supply, with date-t nominal price, B$
t

dB$
t

B$
t

= itdt (2)

Real price of the nominal bond, Bt =
B$
t

Pt
, where evolution of price index is

determined by inflation, π

dPt

Pt
= πtdt (3)

It follows that

dBt

Bt
= rtdt, (4)

where
it = rt + πt (5)
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Liquidity Traps and Taylor Rules Model

Assets II

The date-t nominal price of the claim to the aggregate endowment is S$
t . By

no arbitrage the nominal return must equal the nominal interest rate

dS$
t + PtYtdt

S$
t

= itdt (6)

Real return

dSt + Ytdt

St
= rtdt (7)

Price asset using discount factor (remember Yt = Y )

St = Y

∫ ∞
t

e−
∫ u
t
rsdsdu = Ypt , (8)

where
pt = e−

∫ u
t
rsdsdu, (9)
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Liquidity Traps and Taylor Rules Model

Assets III

and so

dSt = Ydpt . (10)

Hence

S$
t = PtYpt (11)

dS$
t

S$
t

=
dPt

Pt
+

dpt
pt

= πtdt +
dpt
pt

(12)
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Liquidity Traps and Taylor Rules Model

Households I

Continuum of identical households – can work with represenative agent∫ ∞
t

e−δ(u−t)u

(
Cu ,

Mu

Pu

)
du (13)

u(·, ·) increasing in both arguments and concave
uC ,M/P > 0 making consumption and real money balances Edgeworth
complements

∀Y > 0, lim
M/P→∞

uM/P(Y ,M/P)

uC (Y ,M/P)
≤ R(πL) (14)

Rep household invests in nominal debt (in zero net supply) and claim on aggregate
endowment

Date-t nominal wealth

W $
t = NB,tB

$
t + NS,tS

$
t + Mt (15)

Rep household can consume and also pays taxes – derive dynamic intertemporal budget
constraint
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Liquidity Traps and Taylor Rules Model

Households II

in real terms, dynamic intertemporal budget constraint is

dWt = rt(Wt − NS,tSt)dt − it
Mt

Pt
dt + NS,t(dSt + Yt)dt − Ctdt − Ttdt (16)

which is equivalent to

Ẇt = rt(Wt − NS,tSt)− it
Mt

Pt
+ NS,t(dSt + Yt)− Ct − Tt (17)
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Liquidity Traps and Taylor Rules Model

Household Budget Constraint I

W $
t = NB,tB

$
t + NS,tS

$
t + Mt (18)

W $
t+dt = NB,t+dtB

$
t+dt + NS,t+dt(S

$
t+dt + PtYtdt) + Mt+dt − PtCtdt − PtTtdt

(19)

W $
t+dt = NB,tB

$
t + B$

t dNB,t + NB,tdB
$
t (20)

+ NS,tS
$
t + S$

t dNS,t + NS,t(dS
$
t + PtYtdt) + Mt + dMt (21)

− PtCtdt − PtTtdt (22)

(23)

We know

dS$
t = S$

t

(
πtdt +

dpt
pt

)
(24)
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Liquidity Traps and Taylor Rules Model

Household Budget Constraint II

and

dB$
t = B$

t itdt (25)

and so

dW $
t = NB,tB

$
t itdt + NS,t

(
S$
t πtdt + S$

t

dpt
pt

+ PtYtdt

)
− PtCtdt − PtTtdt

(26)

+ dMt + B$
t dNB,t + S$

t dNS,t (27)

Households cannot create assets only exchange them for other assets, so
B$
t dNB,t + S$

t dNS,t + dMt = 0

dW $
t = NB,tB

$
t itdt + NS,t

(
S$
t πtdt + S$

t

dpt
pt

+ PtYtdt

)
− PtCtdt − PtTtdt

(28)
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Liquidity Traps and Taylor Rules Model

Household Budget Constraint III

Now express budget constraint in real terms

Wt =
W $

t

Pt
(29)

dWt =
dW $

t

Pt
− πtWtdt (30)
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Liquidity Traps and Taylor Rules Model

Household Budget Constraint IV

Therefore

dWt = NB,tBt itdt + NS,t

(
Stπtdt + St

dpt
pt

+ Ytdt

)
− Ctdt − Ttdt − πtWtdt

(31)

dWt = NB,tBt itdt + NS,t

(
Stπtdt + St

dpt
pt

+ Ytdt

)
− Ctdt − Ttdt (32)

− πt
(
NB,tBt + NS,tSt +

Mt

Pt

)
dt (33)

= NB,tBtrtdt − πt
Mt

Pt
dt + NS,t

(
St

dpt
pt

+ Ytdt

)
− Ctdt − Ttdt (34)

=

(
NB,tBt +

Mt

Pt

)
rtdt − it

Mt

Pt
dt + NS,t

(
St

dpt
pt

+ Ytdt

)
− Ctdt − Ttdt

(35)

= (Wt − NS,tSt) rtdt − it
Mt

Pt
dt + NS,t

(
St

dpt
pt

+ Ytdt

)
− Ctdt − Ttdt

(36)
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Liquidity Traps and Taylor Rules Model

Matching up with Benhabib, Schmitt-Grohe & Uribe
(2002)

Define

At = NB,tBt +
Mt

Pt
(37)

and so (ex dividend flows)

dWt = dAt + NS,tdSt (38)

= dAt + NS,tYdpt (39)

= dAt + NS,tSt
dpt
pt

(40)

Therefore

dAt = Atrtdt − it
Mt

Pt
dt + NS,tYtdt − Ctdt − Ttdt (41)

[This is equation (2) in Benhabib, Schmitt-Grohe & Uribe (2002)]
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Liquidity Traps and Taylor Rules Model

Government’s Budget Constraint I

Government finances deficits by printing money, M and issuing nominal
bonds with price, B$. Public consumption is assumed to be zero and the
government levies fixed real taxes T per unit time.

W G ,$
t = NG

B,tB
$
t −Mt (42)
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Liquidity Traps and Taylor Rules Model

Government’s Budget Constraint II

W G ,$
t+dt = NG

B,t+dtB
$
t+dt −Mt+dt + PtTtdt (43)

W G ,$
t+dt = (NG

B,t + dNG
B,t)(B$

t + dB$
t )−Mt − dMt + PtTtdt (44)

W G ,$
t+dt = NG

B,tB
$
t + NG

B,tdB
$
t + dNG

B,tB
$
t −Mt − dMt + PtTtdt (45)

dW G ,$
t = NG

B,tdB
$
t + dNG

B,tB
$
t − dMt + PtTtdt (46)

dW G ,$
t = NG

B,tdB
$
t + dNG

B,tB
$
t − dMt + PtTtdt (47)

dW G ,$
t = NG

B,tB
$
t itdt + dNG

B,tB
$
t − dMt + PtTtdt (48)

dW G ,$
t = (W G ,$

t + Mt)itdt + dNG
B,tB

$
t − dMt + PtTtdt (49)

The central bank is an arm of the government and can print money to
purchase nominal bonds, so dNG

B,tB
$
t − dMt = 0

dW G ,$
t = W G ,$

t itdt + Mt itdt + PtTtdt (50)
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Liquidity Traps and Taylor Rules Model

Government’s Budget Constraint III

In real terms

dW G
t = W G

t rtdt +
Mt

Pt
itdt + Ttdt (51)

In equilibrium
At + W G

t = 0 (52)

and so

dAt = Atrtdt −
Mt

Pt
itdt − Ttdt (53)

[This is equation (9) in Benhabib, Schmitt-Grohe & Uribe (2002)]
The central bank imposes the following interest rate rule

it = R(πt), (54)

where ∀π, R(π) ≥ 0 and

∃π∗ > −δ : R(π∗) = δ + π∗,R ′(π∗) > 1 (55)
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Liquidity Traps and Taylor Rules Model

Government’s Budget Constraint IV

The nominal interest rate can never go negative and monetary policy is active
(see Taylor (1993)) in the sense that around the inflation target, π∗, because
the central bank responds to increases (decreases) in inflation with a more
than one-for-one increase (decrease) in the nominal interest rate.
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Liquidity Traps and Taylor Rules Model Solution

Household’s Deterministic Optimal Control Problem I

t ∈ T = [0,∞)

We have a 1-d state, A, which evolves over time according to the following law of motion

dAt = (R(πt)− πt)dt − R(πt)
Mt

Pt
+ Y − Ct − T (56)

The starting value of the state is given by A(0) = A0. The future values of the state will
depend on the control variables Ct and Mt/Pt .

The household chooses the path of the controls, (Ct ,Mt/Pt)t∈T . Her objective is to
maximize the discounted value of her utility flows. At time-t, the utility flow function is
given by

u(Ct ,Mt/Pt) (57)

With a constant time discount rate δ, the household’s objective is given by

J(A0) = sup
(Ct ,Mt/Pt )t∈T

∫ ∞
0

e−δtu(Ct ,Mt/Pt)dt (58)

Date-t objective function

Jt = J(At) = sup
(Cu ,Mu/Pu)u≥t

∫ ∞
t

e−δ(u−t)u(Cu ,Mu/Pu)du (59)

What path should the household choose?
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Liquidity Traps and Taylor Rules Model Solution

Pontryagin’s Maximum Principle I

HJB equation

0 = sup
Ct ,Mt/Pt

u(Ct ,Mt/Pt)− δJ(At) + J′(At)

[
(R(πt)− πt)dt − R(πt)

Mt

Pt
+ Y − Ct − T

]
(60)

+ terms involving exogenous state variables, which household does not control (61)

Maximum Principle

H(At ,Ct ,Mt/Pt , Λ̂t) = u(Ct ,Mt/Pt) + Λ̂t

[
(R(πt)− πt)dt − R(πt)

Mt

Pt
+ Y − Ct − T

]
(62)

HC (At ,Ct ,Mt/Pt , Λ̂t) = 0, given s0 (63)

HM/P(At ,Ct ,Mt/Pt , Λ̂t) = 0, given s0 (64)

HA(At ,Ct ,Mt/Pt , Λ̂t) +
dΛ̂t

dt
− δΛ̂t = 0 (65)

lim
T→∞

e−δ(T−t)Λ̂TAT = 0, (66)
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Liquidity Traps and Taylor Rules Model Solution

Pontryagin’s Maximum Principle II

Household Optimality Conditions

uC (Ct ,Mt/Pt) = Λ̂t , givenA0 (67)

uM/P(Ct ,Mt/Pt) = R(πt)Λ̂t , givenA0 (68)

dΛ̂t

dt
+ (R(πt)− πt − δ) = 0 (69)

lim
T→∞

e−δ(T−t)Λ̂TAT = 0, (70)
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Liquidity Traps and Taylor Rules Model Solution

Market clearing I

Ct = Y

Eliminate M/P from

uC (Ct ,Mt/Pt) = Λ̂t , givenA0 (71)

uM/P(Ct ,Mt/Pt) = R(πt)Λ̂t , givenA0 (72)

(73)

Obtain liquidity preference function – links real money balances to output
and nominal interest rate

Mt

Pt
= l(Y ,R(πt)), lY > 0, lR < 0 (74)

Output flow is constant, so dynamics of real money balance are determined by
dynamics of inflation
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Liquidity Traps and Taylor Rules Model Solution

Market clearing II

Using FOC for C

Λ̂t = L(R(πt)), L′ < 0 (75)

Sub’ing into ode for Λ̂t gives ode for inflation

R ′(πt)︸ ︷︷ ︸
>0

dπt

dt
=
−L(R(πt))

L′(R(πt))︸ ︷︷ ︸
>0

(R(πt)− πt − δ) (76)

In above ode, the independent variable is time and there is only one dependent
variable, inflation. The household’s wealth, excluding the claim on the
endowment is given an ode, which which depends in inflation. Hence, the
dynamics of inflation impact the dynamics of the household’s balance sheet,
but the dynamics of the balance sheet do not impact inflation.

dAt

dt
= R(πt)− πt − R(πt)

Mt

Pt
+

=0︷ ︸︸ ︷
Y − Ct −T (77)
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Liquidity Traps and Taylor Rules Model Solution

Market clearing III

Suppose fiscal policy is given by

T + R(πt)
Mt

Pt
= αAt (78)

Consequently
dAt

dt
= (R(πt)− πt − α)At (79)
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Liquidity Traps and Taylor Rules Equilibrium Dynamics

Summary of equilibrium dynamics

dAt

dt
= (R(πt)− πt − α)At , givenA0 (80)

R ′(πt)︸ ︷︷ ︸
>0

dπt
dt

=
−L(R(πt))

L′(R(πt))︸ ︷︷ ︸
>0

(R(πt)− πt − δ) (81)
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Liquidity Traps and Taylor Rules Equilibrium Dynamics

Taylor rule & inflation dynamics I

We have a Taylor type interest rate rule, where R(π) is an increasing function of π.
Furthemore, R′′(π) > 0 above π∗, but R′′(π) < 0 below π∗

!0.02 0.02 0.04
Π

0.001

0.002

0.003

dΠ!dt

Two critical points (steady states), which are the roots of R(π) = π + δ

target inflation, π∗, unstable critical point, because dπ/dt > 0 for π > π∗ and
dπ/dt < 0 for πL < π < π∗

liquidity trap, πL, stable critical point, because dπ/dt < 0 for πL < π < π∗ and
dπ/dt > 0 for π < πL
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Liquidity Traps and Taylor Rules Equilibrium Dynamics

Taylor rule & inflation dynamics II

Central banks aims to use Taylor use to meet inflation target of π∗, but the zero lower
bound constraint implies that R′(π) must be decreasing at some point when inflation is
below target.

The zero lower bound constraint in tandem with the Taylor rule creates a second steady
state, which is lower than the target and is also an attractor. Therefore, if inflation falls
below target, the economy gets pulled into a low inflation and low interest rate equilibrium,
commonly referred to as a liquidity trap

If inflation is above target, dπ/dt > 0, so inflation keeps on increasing, creating
hyperinflation.
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Liquidity Traps and Taylor Rules Equilibrium Dynamics

Wealth dynamics and fiscal policy I

Household’s wealth dynamics are impacted by inflation dynamics combined
with fiscal policy

dAt

dt
= (R(πt)− πt − α)At , givenA0 (82)

1 Low tax regime: α < r (fiscal policy parameter is α, which is tax revenues plus
interest on real money balances relative to household’s real wealth excluding
endowment claim)

When π > π∗, R(πt)− πt − δ > 0 and so dAt
dt

> 0: on a hyperinflationary
trajectory, household wealth increases
When πL < π < π∗, R(πt)− πt − δ < 0 and so dAt

dt
> 0 at first as inflation

declines, and then turns negative: during deflation caused by liquidity trap,
household wealth eventually declines
When π < πL, R(πt)− πt − δ > 0 and so dAt

dt
> 0: as inflation rises, household

wealth rises too

Harjoat S. Bhamra Lecture 3: Liquidity Traps 2015 28 / 54



Liquidity Traps and Taylor Rules Equilibrium Dynamics

Wealth dynamics and fiscal policy II

2 High tax regime: α > δ (fiscal policy parameter is α, which is tax revenues
plus interest on real money balances relative to household’s real wealth
excluding endowment claim)

When π > π∗, R(πt)− πt − δ > 0 and so dAt
dt

< 0 at first and turns positive
when inflation is sufficiently high: on a hyperinflationary trajectory, household
wealth initially decreases, but eventually increases

When πL < π < π∗, R(πt)− πt − δ < 0 and so dAt
dt

< 0: during deflation
caused by liquidity trap, household wealth declines

When π < πL, R(πt)− πt − δ > 0 and so dAt
dt

> 0: during a severe deflation,

but if inflation rises beyond a given leve below πL, household wealth will start to
decline
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Liquidity Traps and Taylor Rules Equilibrium Dynamics

What about the stock market? I

We have not thought about the claim to the endowment. There is no risk and the
endowment is a constant, so this claim (the stock market) is at first blush not particularly
interesting. We shall actually see that the dynamics of the price-dividend ratio are strongly
impacted by the liquidity trap

Still, we can solve for the value of the stock market. We now know that the price-dividend
ratio, pt , is a function of inflation, i.e. pt = p(πt).

No arbitrage implies that

dSt

dt
+ Y = (R(πt)− πt)St , (83)

and so

p′(πt)
dπt

dt
+ 1 = (R(πt)− πt)p(πt) (84)

Using our ode for π, we obtain an ode for p as a function of inflation

p′(πt)
−L(R(πt))

L′(R(πt))R′(πt)
(R(πt)− πt − δ) + 1 = (R(πt)− πt)p(πt) (85)

We know the economy has two steady states, πL < π∗, where R(πt)− πt − δ = 0, and so
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Liquidity Traps and Taylor Rules Equilibrium Dynamics

What about the stock market? II

in the liquidity trap

p(πL) =
1

R(πL)− πL
(86)

at the inflation target

p(π∗) =
1

R(π∗)− π∗ (87)

We know that R(π∗) > R(πL), so R(πL)− πL > R(π∗)− π∗ if πL is sufficiently negative.

Therefore if deflation is sufficiently severe during the liquidity trap, the stock market
crashes (relative to normal times when inflation is close to its target), i.e. p(πL) < p(π∗).
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Managing a Liquidity Trap: Monetary & Fiscal Policy Basic New Keynesian Model

What can be done while in a liquidity trap?

Werning (2012)

three equation model (see lecture 1)

dxt
dt

= σ−1(it − πt − rt) DIS (88)

dπt
dt

= ρπt − κxt , NKPC (89)

it ≥ 0, ZLB (90)

Have ZLB without Taylor rule
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Managing a Liquidity Trap: Monetary & Fiscal Policy Basic New Keynesian Model

First best with Taylor rule

Can show that maximizing household welfare is approximately equivalent to
minimizing following loss function (see Chapter 4 Appendix of Gali (2012))

L =
1

2

∫ ∞
0

e−δt
(
x2
t + λπ2

t

)
dt (91)

If rt > 0, can obtain first best (xt , πt) = (0, 0) via Taylor rule

it = r + φxxt + φxπt , φx > 1 (92)

there is no trade-off between the stabilization of inflation and the
stabilization of the welfare-relevant output gap (the gap between actual
output and efficient output) for central banks – divine conincidence – see
Blanchard & Gali (2007)
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Managing a Liquidity Trap: Monetary & Fiscal Policy Basic New Keynesian Model

Allow for a liquidity trap

Assume economy starts off in a liquidity trap, but exits at time T [different
from Benhabib, Schmitt-Grohe & Uribe (2002), where liquidity trap arises
endogenously, but output is fixed]

rt =

{
r < 0, t ∈ [0,T )
r > 0, t ≥ T

(93)

Harjoat S. Bhamra Lecture 3: Liquidity Traps 2015 34 / 54

http://www.columbia.edu/~mu2166/avoiding.pdf


Managing a Liquidity Trap: Monetary & Fiscal Policy Monetary Policy without Commitment

What do mean by no commitment?

Central bank cannot credibly announce plans about the future – e.g. cannot
say is will raise interest rates if such and such happens

Central bank optimizes as it goes as along
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Managing a Liquidity Trap: Monetary & Fiscal Policy Monetary Policy without Commitment

Key assumptions

At time of exit from liquidity trap, attain first best, i.e.
∀t ≥ T , (xt , πt) = (0, 0)

this gives us a terminal boundary condition

solve system of ode’s for xt and πt for t < T :

dxt
dt

= −σ−1(r + πt) DIS (94)

dπt
dt

= ρπt − κxt , NKPC (95)
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Managing a Liquidity Trap: Monetary & Fiscal Policy Monetary Policy without Commitment

Depression & Deflation I

Proposition 1

Consider a liquidity trap scenario, with rt < 0 for t < Tand rt ≥ 0 for t ≥ T. Let
πnc
t and xnct denote the equilibrium outcome without commitment. Then inflation

and output are zero after t = T and strictly negative before that:
πnc
t = xnct = 0, t ≥ T , πnc

t < 0, xnct < 0, t < T. Moreover, πt and xt are strictly
increasing in t for t < T. In the limit as T →∞, if the natural rate satisfies∫ T

0
r(t;T )ds → −∞, then πnc

0 , x
nc
0 → −∞

The no commitment equilibrium features depression (xnct < 0, t < T ) and
deflation (πnc

t < 0, t < T ). The longer the liquidity trap lasts (T →∞), the
more severe the depression and deflation.

The loss function diverges to ∞
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Managing a Liquidity Trap: Monetary & Fiscal Policy Monetary Policy without Commitment

Depression & Deflation II
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Managing a Liquidity Trap: Monetary & Fiscal Policy Monetary Policy without Commitment

Intuition

real interest rate is set too high during the liquidity trap – depresses
consumption

effect of depressed consumption accumulates over time.

deflation makes depression more severe by raising the real interest rate even
more, further depressing output, leading to even more deflation, in a vicious
cycle.
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Managing a Liquidity Trap: Monetary & Fiscal Policy Monetary Policy without Commitment

More on non-commitment

Above outcome coincides with the optimal solution with commitment, if one
constrains the problem by imposing (πT , xT ) = (0, 0). Therefore, we see that
the ability to commit to outcomes within the interval t ∈ [0,T ) is irrelevant.
Also, the ability to commit once t = T is reached is also irrelevant.

What is crucial is the ability to commit ex ante at t < T to outcomes for
t = T – making commitments about policy after the liquidity trap during the
trap would change the outcome
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Managing a Liquidity Trap: Monetary & Fiscal Policy Monetary Policy with Commitment

Value of commitment

Look at a simple non-optimal policy with commitment

∀t ≥ 0, πt = −r > 0, xt = − 1

κ
r > 0 (96)

By design, output gap vanishes in flexible price limit (κ→∞)

Nominal interest rate

it = rt + πt =

{
0, t < T

r − r > r > 0, t ≥ T
(97)

Nominal interest rate is zero during the liquidity trap and increased to keep
inflation constant and positive after the trap

Loss function given by

L =
1

2

∫ ∞
0

e−ρt(x2
t + λπ2

t )dt =
1

2

∫ ∞
0

e−ρt(r2 + λ
r2

κ2
)dt (98)

=
r2

2δ

(
1 +

λ

κ2

)
→ r2

2δ
, as κ→∞ (99)

An improvement on optimal policy with no commitment
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Optimal Monetary Policy with Commitment

How much better off can we be with an optimal policy under commitment

Objective function

inf
(it)t≥0

∫ ∞
0

e−ρt(x2
t + λπ2

t )dt (100)

State equations

dxt
dt

= σ−1(it − rt − πt) (101)

dπt
dt

= ρπt − κxt (102)

it ≥ 0 (103)

x0 and π0 are free, i.e. unconstrained
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Deterministic Control Problem I

Hamiltonian

H =
1

2
(x2

t + λπ2
t ) + µx,tσ

−1(it − rt − πt) + µπ,t(ρπt − κxt)− µi,t it (104)

x0 and π0 are free, i.e. unconstrained ⇒ associated Lagrange multipliers are
zero (at date-0), i.e. µx,0 = µπ,0 = 0

0 = Hi (105)

0 = µi,t it , complementary slackness (106)

0 = Hπ +
dµπ
dt
− ρµπ (107)

0 = Hx +
dµx

dt
− ρµx (108)

Also need two transversality conditions (for µx,t and µπ,t)
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Deterministic Control Problem II

Simplify

µx,tσ
−1 = µi,t (109)

0 = µi,t it (110)

dµx,t

dt
= −xt + κµπ,t + ρµx,t (111)

dµπ,t
dt

= −λπt + σ−1µx,t (112)

Equations for state variables

dxt
dt

= σ−1(it − πt − rt) (113)

dπt
dt

= ρπt − κxt (114)
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Solution approach

1 Liquidity Trap, t ∈ [0,T )

2 ZLB holds, but LT has ended, t ∈ [T , T̂ )

3 ZLB no longer holds, t ∈ [T̂ ,∞)

Solve backwards in time and draw separate phase diagram for each time
interval

At the start time for each phase diagram there will be a unique (x , π), which
satisfies transversality conditions

Via choosing a time path for it , central bank can get onto a trajectory, which
passes through (x , π)’s above
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ZLB no longer holds, t ∈ [T̂ ,∞) I

(xT̂ , πT̂ ) given by whatever happened before – take as fixed

ZLB does not bind, i.e. it > 0, and so µi,t = 0. Hence, µx,t = 0

Have following system of equations

0 = −xt + κµπ,t (115)

dµπ,t
dt

= −λπt (116)

dxt
dt

= σ−1(it − πt − rt) (117)

dπt
dt

= ρπt − κxt (118)
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ZLB no longer holds, t ∈ [T̂ ,∞) II

Simplify

κ−1 dxt
dt

= −λπt (119)

dxt
dt

= σ−1(it − πt − rt) (120)

dπt
dt

= ρπt − κxt (121)
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ZLB no longer holds, t ∈ [T̂ ,∞) III

Simplify further

interest rate rule [same interest rate condition as in Clarida, Gali and Gertler
(1999)]

it = rt + (1− κσλ)πt (122)

linear system

dxt
dt

= −κλπt (123)

dπt

dt
= ρπt − κxt (124)

Solve linear system and get a stable saddle path

xt = φπt , φ =
ρ+

√
ρ2 + 4λκ2

2κ
>
ρ

κ
(125)
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ZLB no longer holds, t ∈ [T̂ ,∞) IV
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ZLB holds, but LT has ended, t ∈ [T , T̂ ) I

it = 0

(xT , πT ) given from previous outcomes

linear system

dxt
dt

= −σ−1(r + πt) (126)

dπt
dt

= ρπt − κxt (127)

xT > φπT . The optimum policy attempts to reach the red line as quickly as
possible, by setting the nominal interest rate to zero until xt = φπt
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ZLB holds, but LT has ended, t ∈ [T , T̂ ) II
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Liquidity Trap, t ∈ [0,T ) I

linear system

dxt
dt

= −σ−1(r + πt) (128)

dπt
dt

= ρπt − κxt (129)

(xT , πT ) given and (x0, π0) free
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Liquidity Trap, t ∈ [0,T ) II
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Summary
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